Jet and arc spaces from a commutative algebra point of view
Eric Walker cew028@uark.edu

CARES

11 March 2021

Outline

Topics:

- Functors of points
- Definition of jets and arcs
- Examples of jets and arcs
- Characterization of jets and arcs
- Jet/arc schemes

Outline

Topics:

- Functors of points
- Definition of jets and arcs
- Examples of jets and arcs
- Characterization of jets and arcs
- Jet/arc schemes

Conventions:

- k is a field (you're welcome to think \mathbf{C}, but the characteristic doesn't matter)
- $R, S, T \in \mathbf{A l g}_{k}$ (you're welcome to think of finite type, i.e., $\left.k\left[x_{1}, \ldots, x_{n}\right] /\left(f_{1}, \ldots, f_{s}\right)\right)$
- $m \in \mathbf{N}$
- For a category $\mathcal{C}, X \in \mathcal{C}$ means X is an object of \mathcal{C}
- I suppress the noodly hypotheses

Functors of points

Given a k-algebra R, the m th jet/the arc is another k-algebra. Rather than define them directly, they are defined via their functors of points.

Functors of points

Given a k-algebra R, the m th jet/the arc is another k-algebra. Rather than define them directly, they are defined via their functors of points.
Consider a functor $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$. This is a functor of points and completely determines the k-algebra T.

Functors of points

Given a k-algebra R, the m th jet/the arc is another k-algebra. Rather than define them directly, they are defined via their functors of points.
Consider a functor $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$. This is a functor of points and completely determines the k-algebra T.
(1) Why should this deserve to be called a "functor of points?"

Functors of points

Given a k-algebra R, the m th jet/the arc is another k-algebra. Rather than define them directly, they are defined via their functors of points.
Consider a functor $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$. This is a functor of points and completely determines the k-algebra T.
(1) Why should this deserve to be called a "functor of points?"

- Consider Top. Let $X \in$ Top.

Functors of points

Given a k-algebra R, the m th jet/the arc is another k-algebra. Rather than define them directly, they are defined via their functors of points.
Consider a functor $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$. This is a functor of points and completely determines the k-algebra T.
(1) Why should this deserve to be called a "functor of points?"

- Consider Top. Let $X \in$ Top.
- The points of X are the same as all maps in $\operatorname{Hom}_{\text {Top }}(\{*\}, X)$

Functors of points

Given a k-algebra R, the m th jet/the arc is another k-algebra. Rather than define them directly, they are defined via their functors of points.
Consider a functor $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$. This is a functor of points and completely determines the k-algebra T.
(1) Why should this deserve to be called a "functor of points?"

- Consider Top. Let $X \in$ Top.
- The points of X are the same as all maps in $\operatorname{Hom}_{\text {Top }}(\{*\}, X)$
- We can be more general though:

Functors of points

Given a k-algebra R, the m th jet/the arc is another k-algebra. Rather than define them directly, they are defined via their functors of points.
Consider a functor $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$. This is a functor of points and completely determines the k-algebra T.
(1) Why should this deserve to be called a "functor of points?"

- Consider Top. Let $X \in$ Top.
- The points of X are the same as all maps in $\operatorname{Hom}_{\text {Top }}(\{*\}, X)$
- We can be more general though:
- The "interval-points" of X are $\operatorname{Hom}_{\text {Top }}(I, X)$. (The paths!)

Functors of points

Given a k-algebra R, the m th jet/the arc is another k-algebra. Rather than define them directly, they are defined via their functors of points.
Consider a functor $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$. This is a functor of points and completely determines the k-algebra T.
(1) Why should this deserve to be called a "functor of points?"

- Consider Top. Let $X \in$ Top.
- The points of X are the same as all maps in $\operatorname{Hom}_{\text {Top }}(\{*\}, X)$
- We can be more general though:
- The "interval-points" of X are $\operatorname{Hom}_{\text {Top }}(I, X)$. (The paths!)
- The " S^{1}-points" of X are $\operatorname{Hom}_{\text {Top }}\left(S^{1}, X\right)$. (The loops!)

Functors of points

Given a k-algebra R, the m th jet/the arc is another k-algebra. Rather than define them directly, they are defined via their functors of points.
Consider a functor $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$. This is a functor of points and completely determines the k-algebra T.
(1) Why should this deserve to be called a "functor of points?"

- Consider Top. Let $X \in$ Top.
- The points of X are the same as all maps in $\operatorname{Hom}_{\text {Top }}(\{*\}, X)$
- We can be more general though:
- The "interval-points" of X are $\operatorname{Hom}_{\text {Top }}(I, X)$. (The paths!)
- The " S^{1}-points" of X are $\operatorname{Hom}_{\text {Top }}\left(S^{1}, X\right)$. (The loops!)
- The " Y-valued-points" of X are $\operatorname{Hom}_{\text {Top }}(Y, X)$, for any Y.

Functors of points

(2) Why should $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$ completely determine T ?

Functors of points

(2) Why should $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$ completely determine T ?

- Again, think $X \in$ Top. Most homeomorphism-invariants we know look like $\operatorname{Hom}_{\text {Top }}(-, X)$:

Functors of points

(2 Why should $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$ completely determine T ?

- Again, think $X \in$ Top. Most homeomorphism-invariants we know look like $\operatorname{Hom}_{\text {Top }}(-, X)$:
- Cardinality: $\operatorname{Hom}_{T o p}(\{*\}, X)$

Functors of points

(2 Why should $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$ completely determine T ?

- Again, think $X \in$ Top. Most homeomorphism-invariants we know look like $\operatorname{Hom}_{\text {Top }}(-, X)$:
- Cardinality: $\operatorname{Hom}_{T o p}(\{*\}, X)$
- Path components: $\operatorname{Hom}_{\text {Top }}(I, X) / \sim$

Functors of points

(2 Why should $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$ completely determine T ?

- Again, think $X \in$ Top. Most homeomorphism-invariants we know look like $\operatorname{Hom}_{\text {Top }}(-, X)$:
- Cardinality: $\operatorname{Hom}_{T o p}(\{*\}, X)$
- Path components: $\operatorname{Hom}_{\text {Top }}(I, X) / \sim$
- Fundamental groups: $\operatorname{Hom}_{\text {Top }}\left(S^{1}, X\right) / \sim$

Functors of points

(2 Why should $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$ completely determine T ?

- Again, think $X \in$ Top. Most homeomorphism-invariants we know look like $\operatorname{Hom}_{\text {Top }}(-, X)$:
- Cardinality: $\operatorname{Hom}_{T o p}(\{*\}, X)$
- Path components: $\operatorname{Hom}_{\text {Top }}(I, X) / \sim$
- Fundamental groups: $\operatorname{Hom}_{\text {Top }}\left(S^{1}, X\right) / \sim$
- Higher homotopy groups: $\operatorname{Hom}_{\text {Top }}\left(S^{i}, X\right) / \sim$

Functors of points

(2) Why should $\operatorname{Hom}_{\mathbf{A l g}_{k}}(T,-)$ completely determine T ?

- Again, think $X \in$ Top. Most homeomorphism-invariants we know look like $\operatorname{Hom}_{\text {Top }}(-, X)$:
- Cardinality: $\operatorname{Hom}_{T o p}(\{*\}, X)$
- Path components: $\operatorname{Hom}_{\text {Top }}(I, X) / \sim$
- Fundamental groups: $\operatorname{Hom}_{\text {Top }}\left(S^{1}, X\right) / \sim$
- Higher homotopy groups: $\operatorname{Hom}_{\text {Top }}\left(S^{i}, X\right) / \sim$
- If we range $\operatorname{Hom}_{\text {Top }}\left(Y, X_{1}\right)$ and $\operatorname{Hom}_{\text {Top }}\left(Y, X_{2}\right)$ over all $Y \in \mathbf{T o p}$, then either we find some homeomorphism-invariant so that $X_{1} \not \neq X_{2}$, or we don't. And then:

Functors of points

(2) Why should $\operatorname{Hom}_{\operatorname{Alg}_{k}}(T,-)$ completely determine T ?

- Again, think $X \in$ Top. Most homeomorphism-invariants we know look like $\operatorname{Hom}_{\text {Top }}(-, X)$:
- Cardinality: $\operatorname{Hom}_{T o p}(\{*\}, X)$
- Path components: $\operatorname{Hom}_{\text {Top }}(I, X) / \sim$
- Fundamental groups: $\operatorname{Hom}_{\mathrm{Top}}\left(S^{1}, X\right) / \sim$
- Higher homotopy groups: $\operatorname{Hom}_{\text {Top }}\left(S^{i}, X\right) / \sim$
- If we range $\operatorname{Hom}_{\mathbf{T o p}}\left(Y, X_{1}\right)$ and $\operatorname{Hom}_{\mathbf{T o p}}\left(Y, X_{2}\right)$ over all $Y \in \mathbf{T o p}$, then either we find some homeomorphism-invariant so that $X_{1} \not \not X_{2}$, or we don't. And then:

Yoneda Lemma/Corollary. In any category $\mathcal{C}, X_{1} \cong$ X_{2} if and only if $\operatorname{Hom}_{\mathcal{C}}\left(-, X_{1}\right) \cong \operatorname{Hom}_{\mathcal{C}}\left(-, X_{2}\right)$.

Functors of points

(3) Why is $\mathbf{A l g}_{k}$ backwards compared to Top? (Schemes!)

Functors of points

(3) Why is $\mathbf{A l g}_{k}$ backwards compared to Top? (Schemes!)

- Does that mess with the Yoneda Lemma at all? No, work in the opposite category.

Functors of points

(3) Why is $\mathbf{A l g}_{k}$ backwards compared to Top? (Schemes!)

- Does that mess with the Yoneda Lemma at all? No, work in the opposite category.

4. When we have a functor of the form $\operatorname{Hom}_{\mathcal{C}}(T,-): \mathcal{C} \rightarrow$ Set, we say that T represents the functor.

Definition of jets and arcs

Let $R \in \mathbf{A l g}_{k}$.

Definition of jets and arcs

Let $R \in \mathbf{A l g}_{k}$.
Define the m th jet algebra $J^{m} R$ to be the representing object of the functor $S \mapsto \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(R, S[t] / t^{m+1}\right)$. In other words:

Definition of jets and arcs

Let $R \in \mathbf{A l g}_{k}$.
Define the m th jet algebra $J^{m} R$ to be the representing object of the functor $S \mapsto \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(R, S[t] / t^{m+1}\right)$. In other words:
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{m} R, S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(R, S[t] / t^{m+1}\right)$.

Definition of jets and arcs

Let $R \in \mathbf{A l g}_{k}$.
Define the m th jet algebra $J^{m} R$ to be the representing object of the functor $S \mapsto \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(R, S[t] / t^{m+1}\right)$. In other words:

$$
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{m} R, S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(R, S[t] / t^{m+1}\right)
$$

Define the arc algebra $J^{\infty} R$ to be the representing object of the functor $S \mapsto \operatorname{Hom}_{\mathbf{A l g}_{k}}(R, S \llbracket t \rrbracket)$. In other words:

Definition of jets and arcs

Let $R \in \mathbf{A l g}_{k}$.
Define the m th jet algebra $J^{m} R$ to be the representing object of the functor $S \mapsto \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(R, S[t] / t^{m+1}\right)$. In other words:
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{m} R, S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(R, S[t] / t^{m+1}\right)$.
Define the arc algebra $J^{\infty} R$ to be the representing object of the functor $S \mapsto \operatorname{Hom}_{\mathbf{A l g}_{k}}(R, S \llbracket t \rrbracket)$. In other words:

$$
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{\infty} R, S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}(R, S \llbracket t \rrbracket)
$$

Definition of jets and arcs

Let $R \in \mathbf{A l g}_{k}$.
Define the m th jet algebra $J^{m} R$ to be the representing object of the functor $S \mapsto \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(R, S[t] / t^{m+1}\right)$. In other words:

$$
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{m} R, S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(R, S[t] / t^{m+1}\right)
$$

Define the arc algebra $J^{\infty} R$ to be the representing object of the functor $S \mapsto \operatorname{Hom}_{\mathbf{A l g}_{k}}(R, S \llbracket t \rrbracket)$. In other words:

$$
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{\infty} R, S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}(R, S \llbracket t \rrbracket)
$$

Do $J^{m} R$ and $J^{\infty} R$ exist?

Examples of jets and arcs

Easy example: let $m=0$; what is $J^{0} R$?

Examples of jets and arcs

Easy example: let $m=0$; what is $J^{0} R$?
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{0} R, S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(R, S[t] / t^{0+1}\right)$

Examples of jets and arcs

Easy example: let $m=0$; what is $J^{0} R$?

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{0} R, S\right) & \cong \operatorname{Hom}_{\operatorname{Alg}_{k}}\left(R, S[t] / t^{0+1}\right) \\
& \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}(R, S)
\end{aligned}
$$

Examples of jets and arcs

Easy example: let $m=0$; what is $J^{0} R$?

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{0} R, S\right) & \cong \operatorname{Hom}_{\operatorname{Alg}_{k}}\left(R, S[t] / t^{0+1}\right) \\
& \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}(R, S)
\end{aligned}
$$

Representing objects are unique up to isomorphism, so $J^{0} R \cong R$ for any R.

Examples of jets and arcs

Medium example: let $m=2$; what is $J^{2} k[x, y]$?

Examples of jets and arcs

Medium example: let $m=2$; what is $J^{2} k[x, y]$?
$\operatorname{Hom}_{\operatorname{Alg}_{k}}\left(J^{2} k[x, y], S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y], S[t] / t^{2+1}\right)$

Examples of jets and arcs

Medium example: let $m=2$; what is $J^{2} k[x, y]$?

$$
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y], S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y], S[t] / t^{2+1}\right)
$$

A map $k[x, y] \rightarrow S[t] / t^{3}$ is given by

$$
\begin{aligned}
& x \mapsto a_{0}+a_{1} t+a_{2} t^{2} \\
& y \mapsto b_{0}+b_{1} t+b_{2} t^{2} .
\end{aligned}
$$

Examples of jets and arcs

Medium example: let $m=2$; what is $J^{2} k[x, y]$?

$$
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y], S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y], S[t] / t^{2+1}\right)
$$

A map $k[x, y] \rightarrow S[t] / t^{3}$ is given by

$$
\begin{aligned}
& x \mapsto a_{0}+a_{1} t+a_{2} t^{2} \\
& y \mapsto b_{0}+b_{1} t+b_{2} t^{2} .
\end{aligned}
$$

Thus $k[x, y] \rightarrow S[t] / t^{3}$ is the same as $k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] \rightarrow S$. Therefore

Examples of jets and arcs

Medium example: let $m=2$; what is $J^{2} k[x, y]$?

$$
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y], S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y], S[t] / t^{2+1}\right)
$$

A map $k[x, y] \rightarrow S[t] / t^{3}$ is given by

$$
\begin{aligned}
x & \mapsto a_{0}+a_{1} t+a_{2} t^{2} \\
y & \mapsto b_{0}+b_{1} t+b_{2} t^{2} .
\end{aligned}
$$

Thus $k[x, y] \rightarrow S[t] / t^{3}$ is the same as $k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] \rightarrow S$. Therefore
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y], S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y], S[t] / t^{3}\right)$

Examples of jets and arcs

Medium example: let $m=2$; what is $J^{2} k[x, y]$?

$$
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y], S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y], S[t] / t^{2+1}\right)
$$

A map $k[x, y] \rightarrow S[t] / t^{3}$ is given by

$$
\begin{aligned}
& x \mapsto a_{0}+a_{1} t+a_{2} t^{2} \\
& y \mapsto b_{0}+b_{1} t+b_{2} t^{2} .
\end{aligned}
$$

Thus $k[x, y] \rightarrow S[t] / t^{3}$ is the same as $k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] \rightarrow S$. Therefore
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y], S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y], S[t] / t^{3}\right)$ $\cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right], S\right)$

Examples of jets and arcs

Medium example: let $m=2$; what is $J^{2} k[x, y]$?

$$
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y], S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y], S[t] / t^{2+1}\right)
$$

A map $k[x, y] \rightarrow S[t] / t^{3}$ is given by

$$
\begin{aligned}
& x \mapsto a_{0}+a_{1} t+a_{2} t^{2} \\
& y \mapsto b_{0}+b_{1} t+b_{2} t^{2} .
\end{aligned}
$$

Thus $k[x, y] \rightarrow S[t] / t^{3}$ is the same as $k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] \rightarrow S$. Therefore
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y], S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y], S[t] / t^{3}\right)$ $\cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right], S\right)$
$J^{2} k[x, y] \cong k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right]$

Examples of jets and arcs

Well-done example: let $m=2$; what is $J^{2} k[x, y] /(x y)$?

Examples of jets and arcs

Well-done example: let $m=2$; what is $J^{2} k[x, y] /(x y)$?
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y] /(x y), S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), S[t] / t^{2+1}\right)$

Examples of jets and arcs

Well-done example: let $m=2$; what is $J^{2} k[x, y] /(x y)$?
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y] /(x y), S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), S[t] / t^{2+1}\right)$
We still have

$$
\begin{aligned}
& x \mapsto a_{0}+a_{1} t+a_{2} t^{2} \\
& y \mapsto b_{0}+b_{1} t+b_{2} t^{2}
\end{aligned}
$$

Examples of jets and arcs

Well-done example: let $m=2$; what is $J^{2} k[x, y] /(x y)$?
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y] /(x y), S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), S[t] / t^{2+1}\right)$
We still have

$$
\begin{aligned}
& x \mapsto a_{0}+a_{1} t+a_{2} t^{2} \\
& y \mapsto b_{0}+b_{1} t+b_{2} t^{2},
\end{aligned}
$$

but now subject to the relation

$$
\left(a_{0}+a_{1} t+a_{2} t^{2}\right)\left(b_{0}+b_{1} t+b_{2} t^{2}\right)=0 \in S[t] / t^{3}
$$

Examples of jets and arcs

Well-done example: let $m=2$; what is $J^{2} k[x, y] /(x y)$?
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y] /(x y), S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), S[t] / t^{2+1}\right)$
We still have

$$
\begin{aligned}
& x \mapsto a_{0}+a_{1} t+a_{2} t^{2} \\
& y \mapsto b_{0}+b_{1} t+b_{2} t^{2},
\end{aligned}
$$

but now subject to the relation

$$
\left(a_{0}+a_{1} t+a_{2} t^{2}\right)\left(b_{0}+b_{1} t+b_{2} t^{2}\right)=0 \in S[t] / t^{3}
$$

Distributing and grouping yields

$$
a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) t+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) t^{2}=0
$$

Examples of jets and arcs

Well-done example: let $m=2$; what is $J^{2} k[x, y] /(x y)$?
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y] /(x y), S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), S[t] / t^{2+1}\right)$
We still have

$$
\begin{aligned}
& x \mapsto a_{0}+a_{1} t+a_{2} t^{2} \\
& y \mapsto b_{0}+b_{1} t+b_{2} t^{2},
\end{aligned}
$$

but now subject to the relation

$$
\left(a_{0}+a_{1} t+a_{2} t^{2}\right)\left(b_{0}+b_{1} t+b_{2} t^{2}\right)=0 \in S[t] / t^{3}
$$

Distributing and grouping yields

$$
a_{0} b_{0}+\left(a_{0} b_{1}+a_{1} b_{0}\right) t+\left(a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) t^{2}=0
$$

so $a_{0} b_{0}=a_{0} b_{1}+a_{1} b_{0}=a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}=0$.

Examples of jets and arcs

Therefore the map $k[x, y] /(x y) \rightarrow S[t] / t^{3}$ is the same as a map $k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) \rightarrow S$.

Examples of jets and arcs

Therefore the map $k[x, y] /(x y) \rightarrow S[t] / t^{3}$ is the same as a map $k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) \rightarrow S$.
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y] /(x y), S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), S[t] / t^{3}\right)$

Examples of jets and arcs

Therefore the map $k[x, y] /(x y) \rightarrow S[t] / t^{3}$ is the same as a map $k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) \rightarrow S$.
$\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y] /(x y), S\right) \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), S[t] / t^{3}\right)$
$\cong \operatorname{Hom}_{\mathbf{A l g}_{k}}(k[\underline{a}, \underline{b}] / I, S)$

Examples of jets and arcs

Therefore the map $k[x, y] /(x y) \rightarrow S[t] / t^{3}$ is the same as a map $k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) \rightarrow S$.

$$
\begin{aligned}
\operatorname{Hom}_{\mathbf{A l g}_{k}}\left(J^{2} k[x, y] /(x y), S\right) & \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}\left(k[x, y] /(x y), S[t] / t^{3}\right) \\
& \cong \operatorname{Hom}_{\mathbf{A l g}_{k}}(k[\underline{a}, \underline{b}] / I, S)
\end{aligned}
$$

So

$$
J^{2 k[x, y] /(x y)} \cong k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right) .
$$

Characterization of jets and arcs

How do we glean any meaningful info out of the previous examples?

Characterization of jets and arcs

How do we glean any meaningful info out of the previous examples?
A relabeling of variables will enlighten us:

Characterization of jets and arcs

How do we glean any meaningful info out of the previous examples?
A relabeling of variables will enlighten us:

$$
J^{2 k[x, y] /(x y)} \cong k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)
$$

Characterization of jets and arcs

How do we glean any meaningful info out of the previous examples?
A relabeling of variables will enlighten us:

$$
\begin{aligned}
& J^{2 k[x, y] /(x y) \cong k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)} \\
& J^{2 k[x, y] /(x y) \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x y^{\prime}+x^{\prime} y, x y^{\prime \prime}+x^{\prime} y^{\prime}+x^{\prime \prime} y\right)}
\end{aligned}
$$

Characterization of jets and arcs

How do we glean any meaningful info out of the previous examples?
A relabeling of variables will enlighten us:

$$
\begin{aligned}
& J^{2 k[x, y] /(x y) \cong k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)} \\
& J^{2 k[x, y] /(x y) \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x y^{\prime}+x^{\prime} y, x y^{\prime \prime}+x^{\prime} y^{\prime}+x^{\prime \prime} y\right)}
\end{aligned}
$$

Derivatives!

Characterization of jets and arcs

How do we glean any meaningful info out of the previous examples?
A relabeling of variables will enlighten us:

$$
\begin{aligned}
& J^{2 k[x, y] /(x y) \cong k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)} \\
& J^{2 k[x, y] /(x y) \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x y^{\prime}+x^{\prime} y, x y^{\prime \prime}+x^{\prime} y^{\prime}+x^{\prime \prime} y\right)}
\end{aligned}
$$

Derivatives!
In fact, if char $k \neq 2$, a change of variables allows us:

Characterization of jets and arcs

How do we glean any meaningful info out of the previous examples?
A relabeling of variables will enlighten us:

$$
\begin{aligned}
& J^{2 k[x, y] /(x y) \cong k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)} \\
& J^{2 k[x, y] /(x y) \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x y^{\prime}+x^{\prime} y, x y^{\prime \prime}+x^{\prime} y^{\prime}+x^{\prime \prime} y\right)} .
\end{aligned}
$$

Derivatives!
In fact, if char $k \neq 2$, a change of variables allows us:

$$
J^{2 k[x, y] /(x y)} \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x y^{\prime}+x^{\prime} y, x y^{\prime \prime}+2 x^{\prime} y^{\prime}+x^{\prime \prime} y\right) .
$$

Characterization of jets and arcs

How do we glean any meaningful info out of the previous examples?
A relabeling of variables will enlighten us:

$$
\begin{aligned}
& J^{2 k[x, y] /(x y) \cong k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)} \\
& J^{2 k[x, y] /(x y) \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x y^{\prime}+x^{\prime} y, x y^{\prime \prime}+x^{\prime} y^{\prime}+x^{\prime \prime} y\right)} .
\end{aligned}
$$

Derivatives!
In fact, if char $k \neq 2$, a change of variables allows us:

$$
\begin{aligned}
& J^{2 k[x, y] /(x y)} \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x y^{\prime}+x^{\prime} y, x y^{\prime \prime}+2 x^{\prime} y^{\prime}+x^{\prime \prime} y\right) \\
& J^{2 k[x, y] /(x y)} \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y,(x y)^{\prime},(x y)^{\prime \prime}\right)
\end{aligned}
$$

Characterization of jets and arcs

How do we glean any meaningful info out of the previous examples?
A relabeling of variables will enlighten us:

$$
\begin{aligned}
& J^{2 k[x, y] /(x y) \cong k\left[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}\right] /\left(a_{0} b_{0}, a_{0} b_{1}+a_{1} b_{0}, a_{0} b_{2}+a_{1} b_{1}+a_{2} b_{0}\right)} \\
& J^{2 k[x, y] /(x y) \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x y^{\prime}+x^{\prime} y, x y^{\prime \prime}+x^{\prime} y^{\prime}+x^{\prime \prime} y\right)} .
\end{aligned}
$$

Derivatives!
In fact, if char $k \neq 2$, a change of variables allows us:

$$
\begin{aligned}
& J^{2 k[x, y] /(x y)} \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y, x y^{\prime}+x^{\prime} y, x y^{\prime \prime}+2 x^{\prime} y^{\prime}+x^{\prime \prime} y\right) \\
& J^{2 k[x, y] /(x y)} \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y,(x y)^{\prime},(x y)^{\prime \prime}\right)
\end{aligned}
$$

Characterization of jets and arcs

This holds for all our computed examples:

Characterization of jets and arcs

This holds for all our computed examples:

- $J^{0} R \cong R$ is the 0 th order derivatives

Characterization of jets and arcs

This holds for all our computed examples:

- $J^{0} R \cong R$ is the 0 th order derivatives
- $J^{2} k[x, y] \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right]$

Characterization of jets and arcs

This holds for all our computed examples:

- $J^{0} R \cong R$ is the 0 th order derivatives
- $J^{2} k[x, y] \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right]$
- $J^{2} k[x, y] /(x y) \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y,(x y)^{\prime},(x y)^{\prime \prime}\right)$

Characterization of jets and arcs

This holds for all our computed examples:

- $J^{0} R \cong R$ is the 0 th order derivatives
- $J^{2} k[x, y] \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right]$
- $J^{2} k[x, y] /(x y) \cong k\left[x, x^{\prime}, x^{\prime \prime}, y, y^{\prime}, y^{\prime \prime}\right] /\left(x y,(x y)^{\prime},(x y)^{\prime \prime}\right)$

Theorem. If $R=k\left[x_{\alpha}\right] /\left(f_{\beta}\right)$ for indices α, β, then

$$
J^{m} R \cong k\left[x_{\alpha}, x_{\alpha}{ }^{\prime}, \ldots, x_{\alpha}{ }^{(m)}\right] /\left(f_{\beta}, f_{\beta}{ }^{\prime}, \ldots, f_{\beta}{ }^{(m)}\right)
$$

and

$$
J^{\infty} R \cong k\left[x_{\alpha}, x_{\alpha}{ }^{\prime}, \ldots\right] /\left(f_{\beta}, f_{\beta}{ }^{\prime}, \ldots\right)
$$

Jet/arc schemes

Jets and arcs are really thought of as spaces, as schemes.

Jet/arc schemes

Jets and arcs are really thought of as spaces, as schemes. Quick overview:

Jet/arc schemes

Jets and arcs are really thought of as spaces, as schemes. Quick overview:

- $\mathbf{A l g}_{k} \cong \mathrm{AffSch}_{k}{ }^{o p}$

Jet/arc schemes

Jets and arcs are really thought of as spaces, as schemes. Quick overview:

- $\mathbf{A l g}_{k} \cong \mathbf{A f f S c h}_{k}{ }^{o p}$
- Spec $R \in \mathbf{A f f S c h}_{k}$ is a (Zariski) topological space whose points are $\mathfrak{p} \subseteq R$, along with a sheaf of rings $\mathcal{O}_{\text {Spec } R}$

Jet/arc schemes

Jets and arcs are really thought of as spaces, as schemes. Quick overview:

- $\mathbf{A l g}_{k} \cong \mathbf{A f f S c h}_{k}{ }^{o p}$
- Spec $R \in \mathbf{A f f S c h}_{k}$ is a (Zariski) topological space whose points are $\mathfrak{p} \subseteq R$, along with a sheaf of rings $\mathcal{O}_{\text {Spec } R}$
- A generic scheme $X \in \mathbf{S c h}_{k}$ is built by gluing affine k-schemes together

Jet/arc schemes

Jets and arcs are really thought of as spaces, as schemes. Quick overview:

- $\mathbf{A l g}_{k} \cong \mathbf{A f f S c h}_{k}{ }^{o p}$
- Spec $R \in \mathbf{A f f S c h}_{k}$ is a (Zariski) topological space whose points are $\mathfrak{p} \subseteq R$, along with a sheaf of rings $\mathcal{O}_{\text {Spec } R}$
- A generic scheme $X \in \mathbf{S c h}_{k}$ is built by gluing affine k-schemes together
We know that for affine schemes, we can cook up jet spaces and arc spaces.
$\operatorname{Hom}_{\operatorname{Sch}_{k}}\left(\operatorname{Spec} S, J^{m} \operatorname{Spec} R\right) \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} S[t] / t^{m+1}, \operatorname{Spec} R\right)$.

Jet/arc schemes

Jets and arcs are really thought of as spaces, as schemes. Quick overview:

- $\mathbf{A l g}_{k} \cong \mathbf{A f f S c h}_{k}{ }^{o p}$
- Spec $R \in \mathbf{A f f S c h}_{k}$ is a (Zariski) topological space whose points are $\mathfrak{p} \subseteq R$, along with a sheaf of rings $\mathcal{O}_{\text {Spec } R}$
- A generic scheme $X \in \mathbf{S c h}_{k}$ is built by gluing affine k-schemes together
We know that for affine schemes, we can cook up jet spaces and arc spaces.
$\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} S, J^{m} \operatorname{Spec} R\right) \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} S[t] / t^{m+1}, \operatorname{Spec} R\right)$.
What about a generic (not necessarily affine) scheme?

Jet/arc schemes

Let X be a k-scheme. It has an affine cover $\left\{U_{i}=\operatorname{Spec} R_{i}\right\}$.

Jet/arc schemes

Let X be a k-scheme. It has an affine cover $\left\{U_{i}=\operatorname{Spec} R_{i}\right\}$. We know $J^{m} U_{i}$ exists. If we could glue $J^{m} U_{i}$ s together, we'd have a candidate representing object for the m th jet of X.

Jet/arc schemes

Let X be a k-scheme. It has an affine cover $\left\{U_{i}=\operatorname{Spec} R_{i}\right\}$. We know $J^{m} U_{i}$ exists. If we could glue $J^{m} U_{i}$ s together, we'd have a candidate representing object for the m th jet of X.

- First, observe that for any scheme Y, there is a canonical projection $\pi_{m}: J^{m} Y \rightarrow Y$ induced by $S[t] / t^{m+1} \rightarrow S$.

Jet/arc schemes

Let X be a k-scheme. It has an affine cover $\left\{U_{i}=\operatorname{Spec} R_{i}\right\}$. We know $J^{m} U_{i}$ exists. If we could glue $J^{m} U_{i}$ s together, we'd have a candidate representing object for the m th jet of X.

- First, observe that for any scheme Y, there is a canonical projection $\pi_{m}: J^{m} Y \rightarrow Y$ induced by $S[t] / t^{m+1} \rightarrow S$.
- Next, we claim for any open $V \subseteq X, J^{m} V \cong \pi_{m}{ }^{-1} V$.

Jet/arc schemes

Let X be a k-scheme. It has an affine cover $\left\{U_{i}=\operatorname{Spec} R_{i}\right\}$. We know $J^{m} U_{i}$ exists. If we could glue $J^{m} U_{i}$ s together, we'd have a candidate representing object for the m th jet of X.

- First, observe that for any scheme Y, there is a canonical projection $\pi_{m}: J^{m} Y \rightarrow Y$ induced by $S[t] / t^{m+1} \rightarrow S$.
- Next, we claim for any open $V \subseteq X, J^{m} V \cong \pi_{m}{ }^{-1} V$.

Proof.

$\operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} S, J^{m} X\right) \cong \operatorname{Hom}_{\mathbf{S c h}_{k}}\left(\operatorname{Spec} S[t] / t^{m+1}, X\right)$.
A map $\operatorname{Spec} S[t] / t^{m+1} \rightarrow X$ factors through V if and only if Spec $S \rightarrow \operatorname{Spec} S[t] / t^{m+1} \rightarrow X$ factors through V.

Jet/arc schemes

So now we have a scheme X, an affine cover $\left\{U_{i}\right\}$, and a characterization of the m jets of any $V \subseteq X$; when they exist, they are $J^{m} V \cong \pi_{m}{ }^{-1} V$.

Jet/arc schemes

So now we have a scheme X, an affine cover $\left\{U_{i}\right\}$, and a characterization of the m jets of any $V \subseteq X$; when they exist, they are $J^{m} V \cong \pi_{m}{ }^{-1} V$.
By our characterization, for all i and $j, J^{m}\left(U_{i} \cap U_{j}\right)$ is both

$$
\pi_{m}^{i}{ }^{-1}\left(U_{i} \cap U_{j}\right)
$$

and

$$
\pi_{m}^{j-1}\left(U_{i} \cap U_{j}\right)
$$

So the jets of the affine cover canonically agree along their intersections.

Jet/arc schemes

So now we have a scheme X, an affine cover $\left\{U_{i}\right\}$, and a characterization of the m jets of any $V \subseteq X$; when they exist, they are $J^{m} V \cong \pi_{m}{ }^{-1} V$.
By our characterization, for all i and $j, J^{m}\left(U_{i} \cap U_{j}\right)$ is both

$$
\pi_{m}^{i}{ }^{-1}\left(U_{i} \cap U_{j}\right)
$$

and

$$
\pi_{m}^{j-1}\left(U_{i} \cap U_{j}\right)
$$

So the jets of the affine cover canonically agree along their intersections.
Thus we can glue all the $\left\{J^{m} U_{i}\right\}$ along these intersections to get a well-defined scheme.

Jet/arc schemes

It is then straightforward to see that this scheme, which we will call $J^{m} X$, is the representing object of the functor $S \mapsto$ $\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} S[t] / t^{m+1}, X\right)$.

Jet/arc schemes

It is then straightforward to see that this scheme, which we will call $J^{m} X$, is the representing object of the functor $S \mapsto$ $\operatorname{Hom}_{\text {Sch }_{k}}\left(\operatorname{Spec} S[t] / t^{m+1}, X\right)$.
In other words:
$\operatorname{Hom}_{\operatorname{Sch}_{k}}\left(\operatorname{Spec} S, J^{m} X\right) \cong \operatorname{Hom}_{\operatorname{Sch}_{k}}\left(\operatorname{Spec} S[t] / t^{m+1}, X\right)$.

Thank you!

Lawrence Ein and Mircea Mustaţă. Jet schemes and singularities. Proceedings of Symposia in Pure Mathematics, p. 505-546. 2009. AMS.

